May 25, 2024

How to Elevate Master Data Management

This document outlines the critical steps for effective master data management using the SEIRI, SEITON, SEISO, SEIKETSU, and SHITSUKE methodologies. It emphasizes identifying and removing unnecessary data, organizing essential data, developing procedures for data accuracy, and maintaining data quality standards. By following these structured approaches, organizations can ensure reliable and efficient data management, enhancing decision-making and operational efficiency. This guide provides detailed procedures and responsibilities to establish a robust data management system.

SEIRI - Identify and remove any duplicate or unneeded data only keep the necessary data.

  • How: Identify and remove any duplicate or unneeded data, only keep the necessary data.
  • Why: Removing unnecessary data from master data helps to reduce clutter and improves efficiency by making it easier to find, manage, and maintain critical data.

Steps:

  1. List all master data items, including product numbers, product properties, and quality standards.
  2. Review the usage of those items through system log analysis.
  3. Review and redefine the definitions and usages of the data.
  4. Remove the unnecessary data and confirm with key stakeholders.

SEITON - Catalogue the necessary data in an organized and logical manner to help users easily find information.

  • Source of Truth: Specific data source that is considered the most reliable and accurate within an organization.

Why: It helps to ensure that the right data is used throughout the organization. Using a consistent and reliable source of data helps to improve data quality, reduce errors, and ensure that key decisions are made based on accurate information.

How to do it:

  1. Determine how this data is stored, how it is accessed, and who is responsible for maintaining it.
  2. Establish a clear set of data governance policies and procedures to ensure consistency and accuracy.
  3. Implement proper data validation and verification techniques to ensure that the data is correct and up-to-date.

SEITON - Product Family

  • Product Family: Describes a group of related products that share common manufacturing processes, materials, and characteristics for the purpose of streamlining production and improving efficiency.

Why: Grouping related products into families allows for streamlined planning, scheduling, and execution of manufacturing processes. The use of standardized materials and processes reduces variability in production and helps to minimize the potential for errors and quality issues.

How to do it:

  1. Identify the products that are included in your current product family.
  2. Analyze the manufacturing processes, materials, and characteristics that are common across this product family.
  3. Assess customer demand and market trends to determine if there are opportunities to expand or adjust the product family.
  4. Consider making adjustments to the size or makeup of your product family to optimize production processes, improve product quality, and meet the needs of your customers more effectively.

SEISO - Develop procedures for data creation and validation to ensure data is accurate and up-to-date.

Why: Ensuring new data is accurate, consistent, and useful is critical for decision-making, analysis, and reporting purposes across an organization.

Data Creation Procedure:

  1. Data validation - ensuring the data is accurate, consistent, and complete.
  2. Data formatting - formatting data to be consistent with the rest of the dataset.
  3. Data storage - establishing a centralized location for the storage of data to be easily accessible.
  4. Data entry - guidelines for how new data should be input into the system.
  5. Data security - establishing security protocols that ensure the confidentiality, integrity, and availability of the data.

SEIKETSU - Master Data Owner

  • Master Data Owner: A person or department within an organization who is accountable for the accuracy, consistency, and completeness of master data records.

Why: Responsible for ensuring the accuracy, consistency, and completeness of master data records, which is essential for effective decision-making and reporting.

Responsibilities:

  1. Setting data standards and policies: Define the standards and policies for data creation, validation, and maintenance.
  2. Monitoring data quality: Check the necessary new data, ensuring that the modification of data follows the data standards and policies.
  3. Maintaining data consistency: Ensure that data is consistent across the entire organization and that it aligns with business processes.
  4. Acting as a liaison: Collaborate with other departments, stakeholders, and vendors regarding the maintenance and exchange of data.

SEIKETSU - Product Management System

  • PDM: A software platform that manages product data and process information throughout the lifecycle of a product.

Functions of PDM:

  1. Centralized Data Management: Provides a centralized location where all product data can be stored, accessed, and managed by authorized personnel.
  2. Version Control: Tracks changes made to product data throughout its lifecycle.
  3. Change Management: Allows users to propose, review, and implement changes to product data.
  4. Collaboration: Facilitates collaboration between different teams involved in product development.
  5. Workflow Automation: Automates workflows such as approval processes and workflows for engineering change requests.

SHITSUKE - Build up the mindset

  • Mindset of Data Master: Building up the mindset to understand the importance of data master helps individuals recognize the value of accurate and consistent data in critical business functions.

Why:

  1. Helps individuals recognize the value of accurate and consistent data in critical business functions such as finance, operations, and customer engagement.
  2. Without the right mindset towards data master, individuals may not understand the impact of data quality issues on business performance.
  3. Developing the mindset towards data master will help individuals to recognize the importance of assigning accountability for data quality.
  4. A strong understanding of the importance of data master can help organizations to be proactive in identifying data quality issues.

Three Steps to Enhance the Mindset:

  1. Educate teams on data best practices and availability of the data.
  2. Build a data culture.
  3. Establish Data Governance Policies.

Chinese translation (powered by chatGPT)

如何提升主數據管理

SEIRI - 識別並移除任何重複或不需要的數據,僅保留必要的數據。

  • 如何做:識別並移除任何重複或不需要的數據,僅保留必要的數據。
  • 為什麼:移除不必要的數據有助於減少混亂,提高效率,使得找到、管理和維護關鍵數據更加容易。

步驟

  1. 列出所有主數據項,包括產品編號、產品屬性和質量標準。
  2. 通過系統日誌分析審查這些項目的使用情況。
  3. 審查並重新定義數據的定義和用途。
  4. 移除不必要的數據,並與主要利益相關者確認。

SEITON - 以組織和邏輯的方式目錄必要的數據,以幫助用戶輕鬆找到信息。

  • 真實來源:組織內被認為最可靠和準確的特定數據來源。

為什麼:它有助於確保在整個組織中使用正確的數據。使用一致和可靠的數據來源有助於提高數據質量,減少錯 誤,並確保關鍵決策基於準確的信息。

如何做

  1. 確定這些數據是如何存儲的,如何訪問的,誰負責維護。
  2. 建立一套明確的數據治理政策和程序,以確保一致性和準確性。
  3. 實施適當的數據驗證和驗證技術,以確保數據的正確和最新。

SEITON - 產品系列

  • 產品系列:描述一組相關產品,這些產品共享共同的製造過程、材料和特徵,以精簡生產並提高效率。

為什麼:將相關產品分組成系列有助於精簡計劃、排程和執行製造過程。使用標準化的材料和過程有助於減少生產 中的變異性,並有助於最小化錯誤和質量問題的可能性。

如何做

  1. 識別當前產品系列中包含的產品。
  2. 分析這些產品系列中共同的製造過程、材料和特徵。
  3. 評估客戶需求和市場趨勢,以確定是否有擴展或調整產品系列的機會。
  4. 考慮調整產品系列的大小或組成,以優化生產過程,提高產品質量,更有效地滿足客戶需求。

SEISO - 制定數據創建和驗證程序,以確保數據準確和最新。

為什麼:確保新數據準確、一致且有用,這對於決策、分析和報告至關重要。

數據創建程序

  1. 數據驗證 - 確保數據準確、一致和完整。
  2. 數據格式化 - 將數據格式化為與數據集其餘部分一致。
  3. 數據存儲 - 建立一個集中位置,以便數據可以輕鬆訪問。
  4. 數據輸入 - 關於新數據應如何輸入系統的指南。
  5. 數據安全 - 建立安全協議,確保數據的機密性、完整性和可用性。

SEIKETSU - 主數據所有者

  • 主數據所有者:組織內負責主數據記錄的準確性、一致性和完整性的人或部門。

為什麼:他們負責確保主數據記錄的準確性、一致性和完整性,這對於有效的決策和報告至關重要。

職責

  1. 設定數據標準和政策:定義數據創建、驗證和維護的標準和政策。
  2. 監控數據質量:檢查新數據的必要性,確保數據修改符合數據標準和政策。
  3. 維持數據一致性:確保整個組織的數據一致,並與業務流程保持一致。
  4. 充當聯絡人:與其他部門、利益相關者和供應商合作,維護和交換數據。

SEIKETSU - 產品管理系統

  • PDM:一個管理產品數據和產品全生命周期過程信息的軟件平台。

PDM功能

  1. 集中數據管理:提供一個集中位置,所有產品數據都可以被授權人員存儲、訪問和管理。
  2. 版本控制:跟蹤產品數據在其生命周期內的變更。
  3. 變更管理:允許用戶提議、審查和實施產品數據的變更。
  4. 協作:促進產品開發中不同團隊之間的協作。
  5. 工作流程自動化:自動化工作流程,如審批流程和工程變更請求的工作流程。

SHITSUKE - 建立正確的心態

  • 數據主人的心態:建立正確的心態,了解數據主人的重要性,有助於個人認識到準確和一致的數據在財務、 運營和客戶參與等關鍵業務功能中的價值。

為什麼

  1. 幫助個人認識到準確和一致的數據在財務、運營和客戶參與等關鍵業務功能中的價值。
  2. 如果沒有正確的數據主人心態,個人可能無法理解數據質量問題對業務績效的影響。
  3. 發展數據主人心態有助於個人認識到分配數據質量責任的重要性,這對於維持準確和可靠的數據至關重要。
  4. 對數據主人重要性的深入理解有助於組織主動識別數據質量問題並採取預防措施。

三個步驟

  1. 教育團隊關於數據最佳實踐和數據的可用性。
  2. 建立數據文化。
  3. 制定數據治理政策。